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A higher-order lifting-line theory for a wing in unsteady motion is discussed. 
Apart from the addition of higher-order terms, it also differs from the theory 
derived by James (1975) in its emphasis on ‘physical’ interpretations. This 
emphasis has made it possible to shed some new light on Prandtl’s classical 
lifting-line theory, as well as on Weissinger’s $-chord theory. 

1. Introduction 
Recently a lifting-line theory for the unsteady wing problem was published 

by James (i975). This theory was derived using a matched asymptotic expansion 
method. 

The subject of unsteady lifting-line theory was in recent years also investigated 
by the author of the present paper, using a similar matched asymptotic expansion 
method. This particular work was related to the analysis of the pressure dis- 
tribution on the blades of a helicopter in forward flight. A higher-order lifting- 
line method was developed and published (Van Holten 1974, 1975a) which 
rigorously takes into account all the unsteady and yawed flow phenomena of 
inviscid theory encountered by the blades of a helicopter rotor. 

On comparing the papers written by James and the present author, it  is 
interesting to see how the two approaches, although treating essentially the same 
problem by essentially the same kind of mathematical technique, nevertheless 
differ in many respects, especially in the formulating of the results. This is 
largely due to the fact that the present author, in accordance with the applied 
nature of the problem he considered, used in his papers as many physical argu- 
ments and interpretations as he could. I n  fact, a recent paper (Van Holten 
19753) was almost entirely devoted to a discussion of analytical models, concepts 
and practices in present day rotor analysis, critically examined in the light of the 
more rigorous asymptotic theory. This required a ‘translation’ of the asymptotic 
theory and its results into the terminology of conventional applied aerodynamics. 

The purpose of the present paper, too, is to consider unsteady lifting-line theory 
from a ‘physical’ rather than a formal point of view. It is thus complementary 
to James’s paper. The complete theory of the helicopter blade will not be given 
here - it  has been published elsewhere - and the following discussion is limited to 
only the simplest ‘model’ situations, in order not to burden the discussion with 
non-essential details. 
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562 Th. Vun Holten 

In  one area the present paper touches a subject not covered by James’s 
paper. This is the higher-order lifting-line theory and the light it sheds on 
Weissinger’s well-known $-chord method. 

2. The Iinearized boundary-value problem for the uncambered 
rectangular wing 

As a preliminary we shall consider an uncambered rectangular wing placed 
in a steady parallel flow perpendicular to the span (figure 1). We assume in- 
compressible flow and small perturbations, so that the following linearized flow 
equations apply: 

aVpt + (U . V) V = -p-Igradp (Euler’s equation), (1) 

div V = O (continuity equation), (2) 

where U = i U  is the free-stream velocity, V is the velocity perturbation, with 
components (iu, ju, kw), and p denotes the pressure perturbation. Taking the 
divergence of (1) and substituting (2) yields the Laplace equation for p: 

v2p = 0. (3) 

In  terms of the Cartesian co-ordinates (x, y, z )  the following boundary-value 
problem results for the rectangular wing considered. The pressure perturbation 
should satisfy Laplace’s equation: 

The pressure perturbation should vanish at large distances from the wing: 

p+O for x2+y2+z2+c0. ( 5 )  

According to (1) the normal component of the pressure gradient on the wing 
surface should vanish in the case of an uncambered wing: 

= 0 on the wing surface. (6) 

In  linearized theory this boundary condition is applied to the part of the x,x 
plane for which -+c < x 6 *c and - 4 b  < z < Sb, with c and b denoting the 
chord length and span respectively. Along the leading edge of the wing there 
will in general exist a streamline kink, which implies a pressure singularity: 

p -+ - 00 along the leading edge. (7) 

The strength of this singularity should be such that the flow becomes tangential 
to the wing surface. Because it has already been required by (6) that the curvature 
of the flow on the surface is correct, it  is sufficient to require the flow to be 
tangential along one line on the wing only. A convenient choice is the mid-chord 
line : 

where a(z) is the geometrica1 angle of attack of the wing chords with respect to 
the x, z plane. 

(8) v(O,O, z) /U = - a@) along the mid-chord line, 
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PICURE 1. Notation for rectangular wing. 

The Kutta condition, requiring smooth flow a t  the trailing edge, is implied 
by the above boundary-value problem, because a streamline kink is allowed to 
occur along the leading edge only. It will sometimes be convenient to use the 
fact that the pressure field must be antisymmetric with respect to the x ,  z plane, 
which is also implicit in the boundary-value problem. 

3. Asymptotic approximation of the near field 
In  order to derive a lifting-line theory, the following physical assumption is 

needed: the variations in the pressure in the spanwise direction have a characteristic 
length of the order of the span, whereas the variations in the pressure in the chordwise 
direction have a characteristic length of the order of the chord. Evidently, this 
assumption can be valid only in the so-called near field of the wing, i.e. the field 
close to the wing surface, excluding the regions near the tips. Rewritten in terms 
of the characteristic co-ordinates x/c, y/c and z/b, Laplace’s equation reads 

azp a2p 1 a2p 

+2=--- a(y/c) A2a(z/b)2’  (9) 

where A is the aspect ratio b/c. On account of the physical assumption mentioned 
above, the partial derivatives in (9) are all of the same order of magnitude. 

It follows immediately from (9) that p satisfies st two-dimensional Laplace 
equation when A is very large ( A  -+a). One may refine the analysis by writing 
the near pressure field in the following form: 

This is an asymptotic expression, in which the first term is the two-dimensional 
36-2 
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pressure field, whereas the other terms describe the way in which the pressure 
field becomes two-dimensional when the aspect ratio grows larger and larger. It 
will appear later that terms behaving like A-2 In A for A -fa also occur. For 
convenience, such terms have not been written explicitly in (lo), but are assumed 
to be included in the corresponding term having an asymptotic behaviour like 
A-2. Substituting the assumed type of solution (10) into (9) and equating terms 
of equal order, one arrives at the following conclusion: even when terms O(A-l) 
are included, the pressure field still satisfies the two-dimensional Laplace 
equation 

In  the higher-order approximation, where p z  is also included, the near pressure 
field p satisfies a two-dimensional Poisson equation : 

ap/ax2+ azplayz = o up to o ( A - ~ ) .  (11) 

where ptwo-dim is the solution obtained from (1 1). The discussion of the higher- 
order theory will be postponed until $ 9  and the analysis in $$ 3-8 includes only 
terms up to O(A-l). It is convenient to introduce elliptic co-ordinates, sketched 
in figure 2 and conforming to the transformation formulae 

x = $ccoshqcos$, y = icsinhqsin$. (13) 

The value of 7 ranges between 0 and m, with 7 = constant representing ellipses 
degenerating for 7 = 0 into the wing chord. The co-ordinate $ ranges between 
-n and +n, the lines $ = constant representing hyperbolas orthogonal to 
the ellipses. In  terms of the elliptic co-ordinates, Laplace’s equation (11) reads 
(see, for example, Moon & Spencer 1961) 

The boundary conditions (6) and (7) now read 

apla7 = o for 7 = o (16) 

p + - m  for q =  0, # =  _+n. (16) 

except at the leading edge, where 

The general a.ntisymmetric solution of (14) satisfying the conditions (15) and (16) 
is given by 

where the occurrence of the terms with a,@), although these terms become 
infinite at large distances from the chord (7 -+ m), cannot be ruled out immedi- 
ately: the present approximation for the pressure field is valid only in the near 
field, so that there is no condition at infinity. If i t  should emerge that these 
terms must be kept (and, as will be seen later, this is so in the higher-order 
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FIUTJRE 2. Elliptical co-ordinates. 

theory !) they would contribute to the total sectional lift. Therefore, the co- 
efficient of the first term on the right-hand side of (17), which is the field of a 
two-dimensional flat-plate aerofoil, is written as C,. The index indicates that 
this might only be a part of the total lift coefficient of the wing section. 

4. Asymptotic approximation of the far field 
The far field is defined as the field at distances of the order of the wing span 

b from the wing surface. In  this region the physical assumptions for the near field 
are no longer valid because the characteristic length scale of the far pressure 
field will be equal to the span b in all directions. However, looking at our problem 
on the scale of the span, another simplification may be introduced by noting 
that the limit A = b /c - t co  means that the chord length c shrinks to zero. This 
means that the far field in the asymptotic approximation will become the field 
of a line along which pressure singularities are distributed. 

Such a field may be expressed in several different ways. For the purpose of 
actual calculations it ha9 been found particularly useful to express the far field 
in terms of prolate spheroidal co-ordinates (9, 8, x) (figure 3) defined by the 
transformation formulae 

x = x, (18) 

Surfaces of constant $ are ellipsoids, with $ = 0 representing the lifting line. 
The surfaces of constant 8 are hyperboloids orthogonal to the surfaces 9 = con- 
stant. A dipole distribution having a pressure field antisymmetric with respect 
to the x, z plane is, for instance, given by 

r = +b sinh $ sin 19, z = +b cosh 9 cos 8. 

where Pk and &A denote associated Legendre functions of the first and second 
kind respectively. The advantages of this type of representation of the far field 
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FIGURE 3. Prolate spheroidal co-ordinates. 

will be seen later, in 5 8. The behaviour of the field (19) close to the dipole line is 

which expression enables us to determine the coefficients A ,  if the dipole strength 
distribution is given. 

For the purpose of purely analytical manipulations such as are needed in the 
present paper, a far-field representation in terms of the cylindrical co-ordinates 
( r ,  x, z )  (figure 3) involving modified Bessel functions has been found convenient. 
For this reason the analysis in the appendix uses the latter type of representation. 

5. The matching condition 
Neither the near nor the far field is uniquely determined as yet. In  order to 

remove the indeterminacy the so-called ‘matching condition’ is needed. Using a 
physical argument, this condition will be derived here in a slightly different form 
from usual. Although the ‘physical ’ discussion is perhaps somewhat less rigorous 
than the analysis due to Kaplun (Lagerstrom 1967), the final result will be shown 
to be equivalent to the usual matching condition, whereas the proposed inter- 
pretation of the matching condition has the advantage of eliminating the need 
to use a bit of ‘mysticism’ called the ‘principle of least singularity’ (Van Dyke 
1964, p. 53). 

The argument, in contrast to the usual asymptotic discussions which strictly 
focus on the limiting case A + 00, is based explicitly on the point of view that 
we in practice are really interested in the case of finite aspect ratio A. For both 
the near and far field of the wing asymptotic representations have been found, 



Unsteady lifting-line theory 567 

strictly valid only in the asymptotic limit A -+ co. In  practice, however, because 
the asymptotic results are always applied to cases of finite A ,  the near and far 
field are just regarded as approximations found in a convenient way. No such 
approximation can be found for the intermediate region: the physical assump- 
tions leading to the simplification of the field equations close to the wing surface 
cannot be valid in the intermediate region, and neither is the degeneration of the 
boundary contour into a line valid there. In  other words, for finite A one cannot 
assume the existence of an ‘overlap’ region where both approximations are 
simultaneously valid. The only way, then, to find an approximation for the 
complete pressure field is to find a suitable interpolation expression which 
bridges the gap between near and far field and smoothly merges with the approxi- 
mate solutions of the near and far field. Such a uniformly ‘valid’ field may be 
found by summing the near and far pressure field, and subtracting a correction 
field, which will be called the ‘common field’. The correction field must be chosen 
such that far from the wing it cancels the near field to the required order of 
accuracy so that only the far field remains. Close to the wing surface, the correc- 
tion field has to cancel the far field, so that only the near field remains there. 
Denoting the complete pressure field thus obtained by pcomposite, we have the 
structure 

whereas it should be required that 

(21) 

Pcommon (I)near)r+order b ,  (22) 

Pcomposite = Pnear + Pfar -Pcommon, 

and also Pcommon (Pfar)r+order c, (23) 

where the symbol N denotes identity:up to:a certain specified order of accuracy. 
Combining (22) and (23) yields the matching condition: 

The crucial assumption in the argument is that a pressure fieldpcom,on can indeed 
be found which satisfies (22) and (23) simultaneously. The assumption is equi- 
valent to the assumption that p,,,, and pfar can satisfy (24). Now pnear and thus 
the expression (pnear)r+order satisfy (1 1) or (12). But (1 1) and (12) are also satisfied 
by the expression (pfar)-order c ,  because the physical assumptions.leading to (1 1 )  
and (12) apply just as well to a wing whose chord becomes vanishingly small 
(c + 0). Therefore, (pnear)r+order b and (I)far),.+order satisfy the same differential 
equation, and it is always possible to apply condition (24). 

The usual matching condition is recovered by rewriting (24) in terms of the 
characteristic co-ordinates (r/c for the near field and r/b for the far field) and 
taking the asymptotic limit A -+ co: 

If one aims at a multiplicative structure of the composite field, the argument is 
almost identical. It is to be noted that nowhere in $5 3-5 have the terms ‘outer 
limit’ and ‘inner limit’ been used. This terminology was avoided in order to 
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emphasize that we are interested only in the case of finite aspect ratio, in which 
case the outer limit is just an asymptotic approximation for the far field and the 
inner limit is an approximation for the near field. 

6. Application of the matching condition 

circular-cylinder co-ordinates ( r ,  x) are related by 
At large distances from a wing section the elliptic co-ordinates (7, 6) and the 

$ = x + & (c/r)2 sin 2x + . . . (r/c -+ m), 

7 = In (r/$c) -& (c/r)2 cos 231 + . . . (r/c .+ m), 

(26) 

(27) 

showing that far from the wing section the near field (17) behaves like 

For r of order b, i.e. on substituting r = p b  with p = O(l ) ,  it  is seen that the 
second term in (28) has an asymptotic behaviour O(A-2) for A -+ 00. In  the present 
approximation, where we neglect terms of such orders and smaller, we may thus 
simplify (28) to 

where the terms with a, must still be kept, since the asymptotic order of these 
coefficients is a priori not known. Nevertheless, (29) shows that to the present 
order of approximation the behaviour of the near field a t  distances of order b 
involves just one type of singularity, viz. a dipole of strength C,(z)c, associated 
with the first term in the right-hand side of (29). According to (24), the far field 
thus consists of a discrete dipole line only. Formulae for the field of a dipole line 
are given in the appendix, where it is shown [equation (A5)] that the behaviour 
of the far field close to the line is given by 

where CL denotes the second spanwise derivative of C, with respect to the 
non-dimensional co-ordinate z/&b. Again using the physical interpretation (24) of 
the matching condition, it is seen that for r of the order c, i.e. on substituting 
r = yc with y = O(l ) ,  the second term on the right-hand side of (30) is of order 
A-2 In A for A-+oo, and may be neglected. Using the matching condition (24) 
thus shows that an = 0 in (29), and the composite pressure field of the uncambered 
rectangular wing finally becomes 

to O(A-1). 
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7. Classical lifting-line theory 
Having obtained an expression for the complete pressure field of the wing, we 

can calculate the field of velocity perturbations using (1). The evaluation of the 
velocity a t  time to a t  a given point is equivalent to the computation of the velocity 
acquired by a particle of air coming from infinity upstream, travelling through 
the known pressure field and passing the point considered a t  the required time 
to. In the linearized theory the convective part of the acceleration in (1) is taken 
in the direction of the free-stream velocity U so that during the velocity inte- 
gration the trajectory of the particle may be approximated by a straight line 
parallel to U. The position of the particle relative to the wing is thus known at any 
instant of time, as well as the pressure gradient ‘experienced’ by the particle. 
The vertical velocity perturbation at a point z on the mid-chord line a t  time to 
is thus found by evaluating the integral 

J‘O 2 { x ( t ) ,  O,z,t}dt, 
V 

(0, 0, z ,  to) = - - 
PU - m a y  

where -p-lap/ay is the vertical acceleration experienced by the particle when it 
moves through the pressure field of the wing. In  the case of steady flow the value 
of the integral will of course be independent of the time to, whereas ap/ay depends 
on t only via the x co-ordinate of the particle. The more general formulation (32) 
is used here because it is also applicable to the unsteady cases considered later. 

The function ap/ay in (32) may be obtained from (31). Now the first term on 
the right-hand side of (31) is the pressure field of a two-dimensional flat-plate 
aerofoil. Consequently, this term contributes a velocity v/U = - [C&)]/2n as in 
two-dimensional aerofoil theory. The contribution of the other two terms on the 
right-hand side of (31) is symbolically written as -vi/U. 

The ‘induced angle of attack‘ vi/U is regarded in vortex theory as the con- 
tribution of the trailing vorticity of a lifting vortex line. In  the pressure theory 
it is the contribution of the lifting pressure dipole line, together with the common 
term, consisting of a two-dimensional pressure dipole. 

We can now apply the last remaining boundary condition, i.e. the tangency 
condition (8)) in order to obtain an integral equation for the function C,(z): 

G ( 4  vi - -- - - ( 2 )  = -a@), 
far fleld+ 2n u (33) 

V 
- 

near field 
common part 

or, rewritten, C,(z) = 2n{a(4 - .i(Z)IU}, (34) 

which is Prandtl’s classical integral equation, stating that a wing section behaves 
like a two-dimensional aerofoil placed at an effective angle of attack a- vJU.  

As pointed out by Van Dyke (1964, p. 172) and James (1975), one can solve 
this equation by performing quadratures instead of solving it as an integral 
equation. This is so because the asymptotic theory indicates that vi represents 
an effect O(A-l). The dipole distribution causing vi thus need not be known to a 
higher accuracy than O(Ao) and one may take the strength of the distributed 
dipoles as predicted by a simple strip analysis, where every wing section is 
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FIGURE 4. Definition of induced velocity at P :  sum of 
contributions of vortex systems A and B. 

assumed to be an isolated two-dimensional aerofoil. In  practice, however, this 
leads to difficulties near the wing tips (figure 9-4 in Van Dyke 1964) and the 
formulation as an integral equation may often be preferred in actual calculations. 

The present asymptotic analysis also points out a shortcoming in Prandtl's 
classical model. For, in the asymptotic approach to lifting-line theory u, was 
found as the contribution of the pressure dipole line together with the common 
term. Translated into vortex terminology (figure 4), this means that vui is the 
velocity a t  a point P due to the lifting vortex and its associated trailing vorticity 
together with the velocity due to a two-dimensional vortex of equal local strength 
but with opposite direction passing through the same point P. Naturally, this 
does not affect the quantitative results in steady flow: the contribution of the 
two-dimensional vortex to v, is zero. 

Things are very different, however, when we come to consider unsteady flow. 

8. Unsteady lifting-line theory 
In  the case of unsteady lift, we should again take for ui(z, t )  at the point P the 

velocity due to the lifting vortex line (having a wake of trailing as well as shed 
vorticity) und add to this the velocity due to the two-dimensional vortex, which 
is now also accompanied by shed vorticity (figure 5) .  Again, the strength of this 
two-dimensional vortex varies in time in the same way as the bound vorticity 
at P,  although it is of opposite direction. It will be clear that this definition of 
induced velocity does not lead to infinite values of ~ ( ( 2 ,  t ) .  One of the obstacles 
preventing the use of classical lifting-line concepts in unsteady flow has thus 
been traced back to a wrong interpretation of Prandtl's steady flow model. 

The actual numerical or possibly analytical calculation of the induced velocity 
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FIGURE 5 .  Definition of induced velocity a t  P ;  sum of 
contributions of vortex systems A and B. 

in the case of unsteady lift is straightforward, using the definition obtained by 
combining ( 3  1) and (32) : 

where in the integrand r = U(t ,  - t ) ,  and z is independent of time in the case of a 
steady parallel free-stream velocity perpendicular to the span. The symbol pdip 
again denotes a harmonic pressure field behaving near the lifting line like 

-Z(z, t )  (sin~/%r).  (36) 

The expansion (30) clearly shows that the integrand of (35) near the lifting 
line only contains a logarithmic singularity, which is integrable, without having 
to attach a special definition to the integral of vi. This is in contrast to James's 
formulation, where vi is defined by a Hadamard integral. 

If $)dip is expressed using (19) ,  the integrand has a form which proves to be 
very convenient for actual numerical calculations: in this way vi is found for a, 
number of orthogonal lift distributions by performing one-dimensional integra- 
tions with respect to time. This procedure replaces the two-dimensional spatial 
integration over the vortex sheet needed when Biot & Savart's theorem is used 
for calculating the induced velocity. It is furthermore illustrated in Van Holten 
( 1 9 7 5 ~ )  that the evaluation of v, can always be reduced to a one-dimensional 
integral, no matter how complicated the wing motion is: the above assumption 
of a steady free stream is non-essential for the procedure. 

Having obtained a rigorous and convenient definition of the induced velocity 
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vi for unsteady lift, we can write down the integral equation for the time-depen- 
dent function G(z, t ) .  Let us assume that the rectangular wing considered is 
moving through a gust field, whose vertical velocity wg in the x, z plane (figure 1) 
is wg(x, z, t ) .  

Instantaneously the boundary-value problem is identical to the problem 
formulated in (4)-(8), provided the gust velocities are small enough to be con- 
sidered as small perturbations. Consequently, the pressure field of the wing has 
the same form as the pressure field (31), except that C, is a function of time: 

Cl(z,t) sin# PdIP sin x +- (r,  x, 2,  t )  +qz, t )  c-. &PU2 7~ coshr,J+cos# &pU2 27Tr (37) 
P - = -- 

It should be carefully noted that this pressure field is entirely different from the 
field of a wing placed in a steady parallel flow where the unsteadiness results from 
a pitching or heaving motion of the wing with respect to an inertial frame of 
reference. I n  the latter case the motion of the wing surface implies a vertical 
acceleration of the particles of air moving along the wing surface, so that the 
near pressure field in (37) would have to be supplemented by an additional field 
taking care of this additional acceleration. In  expression (37) the near fieldis 
the pressure field of a two-dimensional flat-plate aerofoil a t  rest with respect to 
an inertial frame of reference, although its lift is variable. The value of v(z, t ) /U  
along the mid-chord line contributed by the near pressure field should be cal- 
culated according to the two-dimensional theory for an aerofoil in a gust field 
and is symbolically written as 

Applying the tangency condition gives 

This yields, on inverting (39), 

denotes the functional relationship between the time-varying gust 
angle vJU at the mid-chord point of a stationary two-dimensional aerofoil and 
its time-varying lift (see e.g. Fung 1968). It is seen that the wing sections may be 
analysed using the two-dimensional theory for an aerofoil in a gust field, using 
an effective gust field. 

If a in (40) is a function of time a(z,t), then we have the case of a wing in 
pitching motion, and (40) does not remain valid. The pressure field (37) should 
then be supplemented with the field of a pitching two-dimensional aerofoil and 
the tangency condition should be modified accordingly. It is easily checked that 
the wing sections may then be considered to behave like two-dimensional pitching 
amofoils, whereas the induced downwash associated with the lift due to pitching 

where CZ2D, gust 
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FIGURE 6. Amplitude of lift variation va. reduced frequency of an 
aerofoil in pitching motion and in oscillating flow. 

may be considered as a ‘self-induced’ gust field which adds to vg. The unsteady 
lifting-line theory thus takes the form 

where ‘b, pitching denotes the functional relationship between the time-varying 
angle of incidence and the time-varying lift, as calculated using the two- 
dimensional theory of pitching aerofoils (see, for example, Fung 1968). The 
induced velocity vi is the velocity caused by the total lift of the wing sections, 
i.e. the lift due to pitching as well as the lift due to the effective gust velocities. 

Obviously, an analogous expression can be derived for the case of a heaving 
motion. 

James (1976) finds for harmonic pitching motion a(z, t )  = a&) sinwt that 
lifting-line theory degenerates into strip analysis when the reduced frequency 
k = wc/2Li grows large. This result may be understood easily by considering 
figure 6. Two flat-plate aerofoils are compared, one oscillating around its &c 
point, the other one at rest, but placed in a gust field. 

In  both cases it is assumed that the angle between the chord and the free- 
stream velocity varies like 

a(t) = a,sinwt. (42) 
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The lift coefficient Cl(t) varies like 

where the amplitude Ct0 would have the value C, = 2 m ,  in quasi-steady con- 
ditions. Figure 6 shows the actual unsteady value of Go as afunction of the reduced 
frequency k, calculated by two-dimensional theory. It is seen that Go for the 
pitching aerofoil increases for large reduced frequencies k whereas c0 in the gust 
case decreases steadily with increasing k. Looking back at (41) this shows that 
the three-dimensional effects on a pitching wing diminish in relative importance 
as k increases because vi(z,t) influences the sectional lift via a ‘gust relation’. 
However, it  may also be concluded from figure 6 that strip analysis is a rather 
crude device in the usual range of reduced frequencies k = 0.1 to I. 

9. Higher-order lifting-line theory 
As mentioned previously, owing to the incorrect interpretation of Prandtl’s 

lifting-line model for steady flow, unsteady lifting-line theory has always met 
the problem of singular values of the induced downwash. Often one has tried to 
avoid this problem by using Weissinger’s $-chord method, where the problem 
does not occur. Unfortunately, Weissinger’s theory is not well founded theoretic- 
ally, and one cannot be certain about its validity in unsteady flow. As will now 
be shown, this question can be answered by deriving a higher-order lifting-line 
theory using the matched asymptotic expansion method explained in $8 3-7. 
Just a brief outline will be given, and further details may be found in Van 
Holten ( 1 9 7 5 ~ ) .  

Substituting the first-order near field given by the first term on the right-hand 
side of (31) into (12) and rewriting this equation using (14), one obtains the 
following Poisson equation for pnear: 

where I’; denotes the second derivative of the sectional lift I ,  with respect to the 
non-dimensional co-ordinate z/+b. In  order to indicate that I’i is a function of 
the spanwise co-ordinate and to remain consistent with the other notation, we 
shall further use the notation ri(z). This should not be interpreted as a derivative 
with respect to the argument x ! The particular solution of (44) is given by 

The complete solution of (44) may also contain solutions of the two-dimensional 
Laplace equation, of the form given by (17). The analysis outlined in $53-7 
can now be applied once again, leading to the following results: 

l , (z)  sin$ 1 E;(z) 
Pnear  = -- +- - (q sinhq sin $ + 4 sin 2$) 

nc coshq+cos$ 2A2 nc 
+ 2G(z) coshq sin $. (46) 
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G(x) is the maximum difference in a plane z = constant between the pressure 
induced by a three-dimensional dipole line and the pressure of a two-dimensional 
dipole of equal local strength, measured a t  a point a t  a distance &C from the line. 
According to (A7), G(z)  has the value 

G ( 4  = paip(&c, Qn, 2) + (2/nc) J l (Z) ,  (47) 

(48) 

wherepnip(r, x, z )  denotes the field of a dipole line, i.e. a harmonic field behaving 
for r + 0 like 

The far-field behaviour of pnea,. according to (46), neglecting terms O(A--3) and 
smaller, is 

x, z ,  - sin 

I ; ( x )  r + zc( ,In (i) sin x + 4 sin 2x  

The far-field behaviour of pnear is seen to involve two singulmities: a dipole as 
well as a quadrupole singularity. However, up to O(A-2) the field (49) is equal 
to the field of a discrete dipole, shifted towards the quarter-chord position. 
Denoting cylindrical co-ordinates centred around the $c line of the wing by 

x = r’ cos x’ - Qc, y = r’ sin x’, (50 )  
(r‘, x‘, z ) ,  

(49) may be written as 

sinx’ Z”(z) rfln (’) r’ 
(Pnear)-order b = - zl(z) 7 + - sin 2’ + 2G(z) ‘i-sinXf. (51) 

2nr 2A27rc& 2c 

The composite pressure field to O ( A - 2 )  is again built up as 

Ilcomposite = Pnear + Pfa r  - Pcommon, (52 )  

where pnear is given by (46), pcommon by (51) and pfar equals Palp (r‘, x’, x ) ,  which 
denotes a dipole line along the quarter-chord line, behaving for r’ -+ 0 like 

pdiP(r’, x’, x )  N - Z,(z) sin (X’)/Znr’ for r’+ 0 .  ( 5 3 )  

In  order to find the unknown function Z,(z) we apply the tangency condition 
along the quarter-chord line (i.e. a t  x = - t c ) .  The value of v/U a t  the quarter- 
chord line is found by transforming ( 3 2 )  into 

which on substituting ( 5 2 )  yields 

where vi is the induced velocity of classical lifting-line theory, defined as 
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On applying the tangency condition (55) yields after some rearrangement 

(57) 

The lift 1, is the part of the total sectional lift associated with the first term on 
the right-hand side of (46). The total sectional lift is given by 

C,(Z) = C~,(Z) - 2nG(z)/pU2. ( 5 8 )  

10. The #-chord method in steady flow 
Weissinger’s $-chord method may be recovered from the set of equations given 

above by applying the tangency condition at the Q-chord line (i.e. at x = &) 
instead of applying i t  at the quarter-chord line. First of all, i t  should be re- 
membered that near the wing surface the value Ofl)dip(r’, x’, x )  -pcOmmOn becomes 
zero, so that according to (51) 

Therefore, integrating (59) up to the $-chord line and using (56) gives 

On solving (60) forvi/U and substituting into (55 ) ,  the tangency condition reads 

As may be seen from (60), the integral on the right-hand side of (61) is O(A-1). 
We may then replace the function l,(z) in the integrand of (61) by Z(z) without 
introducing relevant errors, since according to (58) the difference between I ,  
and I is a function O ( L I - ~ ) .  Furthermore, we may solve (58) for C,(z) and sub- 
stitute this for the first term on the right-hand side of (61). Equation (61) thus 
transforms into 

(62) 

where Pdipl(r‘, x‘, x )  denotes the field of a dipole line in the quarter-chord position, 
behaving for r‘+ 0 like 

l)dipl(r’, x‘, x )  - z(z) sin (x’)/277r’, (63) 

i.e. its dipole strength distribution is based on Z(z) instead of on Z,(z) as was 

We now use Pistolesi’s theorem (see e.g. Schlichting & Truckenbrodt 1967). 
This theorem states that the downwash a t  the $-chord point of a flat-plate 

Pdlp in (53)* 
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aerofoil induced by a two-dimensional vortex at the +chord point having a 
strength which represents the lift of the aerofoil equals the correct downwash 
a t  the $-chord point. Therefore 

and (62) finally reads 

Ignoring for a moment the last term, (65) states that the downwash induced 
along the &chord line of a wing by a lifting line in the &-position should equal 
the downwash required by the angle of incidence of the wing sections. We have 
thus recovered Weissinger’s method. The last term in (65), which is O(A-2), is 
the error in the $-chord method. However, the error vanishes for untwisted 
wings or wings with linear twist, since C;(z) in the last term need not have better 
accuracy than O(Ao) and may thus be based on a simple strip analysis. In  more 
general cases the error may be expected to very small. Note that the proof of 
Weissinger’s theorem is derived here only for a rectangular planform with 
uncambered sections. 

11. Weissinger’s method in unsteady flow 
From the preceding section it has appeared that the central theorem needed 

to transform the higher-order lifting-line equations into Weissinger’s formula- 
tion is Pistolesi’s theorem. From this observation one can now conclude imme- 
diately that Weissinger’s method does not remain valid in unsteady flow, 
because Pistolesi’s theorem does not. Even without actually calculating the 
unsteady downwash at the $-chord point due to a variable two-dimensional 
vortex, this is clear from figure 6 .  The two-dimensional vortex representing a 
given function Z(t) causes a time-varying value of v /U( t )  a t  the $-chord point 
which is uniquely related to the function l ( t ) .  In  the case of the actual aerofoil, 
the function v/U(t)  and Z(t) are not uniquely related: their relation depends upon 
the particular motion considered, because of apparent-mass effects. The formu- 
lation of higher-order theory given in $ 9  is much more suitable for extension 
of the theory to unsteady flow, and yields the complete unsteady pressure 
distribution on the wing surface. More details may be found in Van Holten 
(1975 a), where the higher-order lifting-line theory, with appropriate modifica- 
tions, is used to calculate the lift and moment distribution along helicopter 
blades in forward flight. 

12. Conclusions 
(i) The problem of singular induced velocities usually encountered in unsteady 

lifting-line theories is due to a misinterpretation of Prandtl’s steady-flow model. 
A satisfactory and convenient definition of vi can be derived. 

37 F L M  77 
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(ii) Unsteady lifting-line theory can be formulated such that the section 
characteristics are expressed in terms of two-dimensional aerofoil characteristics. 
Three-dimensional effects should be taken into account by treating the variable 
induced velocity as a self-induced gust field. 

(iii) Weissinger’s &chord method can be shown to be exact to O(A-2) in the 
case of an uncambered, linearly twisted, rectangular wing in steady flow. The 
method is not usable in unsteady flow. However, a different formulation can be 
given to higher-order lifting-line theory which remains valid in unsteady flow. 
The latter theory yields the complete higher-order unsteady pressure distribu- 
tion on the wing surface. 

Appendix. The field of a dipole line 
Writing the Laplace equation (3) in terms of the circular-cylinder co-ordinates 

( r ,  x, z )  (figure 3) and solving by separation (e.g. Moon & Spencer 1961), one finds 
that the pressure field must be built up from elementary solutions of the form 

PP, x, 2) = sin (nx) K,(q[r/Sbl) { 4 d  cos (q[z/@l) + B(d sin (q[z/8bl)}, (A 1) 

where n and q are the separation constants and K, denotes a modified Bessel 
function of the second kind. Only periodic solutions having antisymmetry with 
respect to x = 0 and having a singularity at r = 0 have been retained. As will 
be shown a line of dipoles with dipole strengthf(z/gb) is obtained by choosing 

n =  1, I 

and integrating (A 1) over all values of q between 0 and 00: 

The behaviour ofp,,, near the line r = 0 is found by substituting the expansion 

(A 4) 
1 

K,(x) = - + &x(ln (4%) + (y  - 8))  + . . . , 
X 

and expanding the integral (A 3) asymptotically for r/+b -+ 0. The first term of 
the asymptotic series is easily recognized as the Fourier integral representation 
of [sin~/Sn(r/~b)]f(z/&b). Likewise, the second term is seen to have the structure 
of a gauge function (sinx/4n) (r/;/Sb) In (r/&b) multiplied by the Fourier integral 
representation of the function - f”(z /&b).  

The expansion of (A 3) for r -+ 0 thus reads 
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As will be shown, there is no need to express F(z/&b) in terms of f ( z / & b ) .  For 
convenience, In (r/&b),  in the second term of (A 5), is rewritten as In (r/$c) - In (2A), 
yielding the following alternative form of (A 5): 

sin x sinx r r 
3n(r,&b)’(%) -x@ (Lc) ( i b )  i b  P d i p P ,  x7 4 = ~ 

In - f” - +sin~-22AG 

From (A 6) it  follows that 

G(z/&b) = pd,,(&, &?7,Z) - (A/n)f(z) + O(k31nA), (A?) 

which provides us, using expression (19) for Pdlp, with an efficient procedure to 
evaluate G(z/&b) numerically to the required order of accuracy. 
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